人工智能将来发展能让人类得到永生吗?

计算机专业 2020-01-01 127 0

  人工智能将来发展能让人类得到永生吗?

  人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类。

  弱人工智能Artificial Narrow Intelligence (ANI): 弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。

  强人工智能Artificial General Intelligence (AGI): 人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多,我们现在还做不到。Linda Gottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作。”强人工智能在进行这些操作时应该和人类一样得心应手。

  超人工智能Artificial Superintelligence (ASI): 牛津哲学家,知名人工智能思想家Nick Bostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能。”超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的。超人工智能也正是为什么人工智能这个话题这么火热的缘故,同样也是为什么永生和灭绝这两个词会在本文中多次出现。

  现在,人类已经掌握了弱人工智能。其实弱人工智能无处不在,人工智能革命是从弱人工智能,通过强人工智能,最终到达超人工智能的旅途。这段旅途中人类可能会生还下来,可能不会,但是无论如何,世界将变得完全不一样。

  事实上,衰老和时间不是绑死的。时间总是会继续前进的,而衰老却不一定。仔细想想,衰老只是身体的组成物质用旧了。汽车开久了也会旧,但是汽车一定会衰老吗?如果你能够拥有完美的修复技术、或者直接替换老旧的汽车部件,这辆车就能永远开下去。人体只是更加复杂而已,本质上和汽车是一样的。

  Kurzweil提到由Wifi连接的纳米机器人在血液中流动,可以执行很多人类健康相关的任务,包括日常维修,替换死去的细胞等等。如果这项技术能够被完美掌握,这个流程(或者一个超人工智能发明的更好的流程)将能使人的身体永远健康,甚至越活越年轻。一个60岁的人和一个30岁的人身体上的区别只是物理上的,只要技术足够发达我们是能改变这种区别的。

  超人工智能可以建造一个“年轻机器”,当一个60岁的人走进去后,再出来时就拥有了年轻30岁的身体。就算是逐渐糊涂的大脑也可能年轻化,只要超人工智能足够聪明,能够发现不影响大脑数据的方法来改造大脑就好了。一个90岁的失忆症患者可以走进“年轻机器”,再出来时就拥有了年轻的大脑。这些听起来很离谱,但是身体只是一堆原子罢了,只要超人工智能可以操纵各种原子结构的话,这就完全不离谱。

  人工智能专业前景如何?http://www.99zihua.cn

  极其好。如果说计算机专业是上个时代的老大,那么人工智能专业就是下个时代的龙头。因为:

  1. 大数据、芯片计算能力、5G网络的发展使得AI人工智能得以高速发展。目前在自动驾驶、智能家居、工业制造等很多领域,人工智能都在快速突破。例如预计5-10年后,美国有50%的车辆将是无人驾驶。

  2. 真正的人工智能公司发展潜力很大, 人才更容易脱颖而出。如人工智能芯片公司“深鉴科技”,由四名清华高手仅仅创立2年后被收购,收购价3-4亿美元。当然,该专业的工资也很高,真正的人工智能岗位年薪百万比较容易。

  人工智能专业的要求高么?

  很高。该专业的前景有多好,对应的专业要求就有多高。 人工智能是计算机+数学建模的结合,该专业要求有极其好的数学逻辑能力,能把该专业真正学明白的估计没多少人。 例如给你1万张手机自拍人脸照片,让你通过编程,建立一个数学模型识别出照片中哪些人脸是高兴的表情。你需要把照片转化为计算机可处理数据,例如不同格式不同尺寸的图片如何统一处理;你需要搭建模型来判断数据有什么规律是表示高兴,例如计算嘴角的弧度、眉头的皱纹等等,同时要考虑不同年龄不同人种的脸部特点;模型要经过大量训练来优化,这会需要大量的计算机处理能力(例如几十台服务器),需要设计优秀的程序来保证训练过程尽量减少计算机的消耗以及减少计算时间(如并行计算)。

  因此,基本是绝对的数学学霸可以真正搞定该专业。


http://www.99zihua.cn/a/3816.html 人工智能将来发展能让人类得到永生吗? 计算机专业

联系方式

客服QQ: 1067845683
客服电话:

您的姓名 :
联系电话 :

如果您还不明白,欢迎关注右侧二维码了解更多。

扫一扫关注公众号

评论

标签列表

Processed in 0.637822 Second , 72 querys.